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Abstract

Compound identification from tandem mass spectrometry (MS/MS) data is a critical step
in the analysis of complex mixtures. Typical solutions for the MS/MS spectrum to com-
pound (MS2C) problem involve comparing the unknown spectrum against a library of known
spectrum-molecule pairs, an approach that is limited by incomplete library coverage. Com-
pound to MS/MS spectrum (C2MS) models can improve retrieval rates by augmenting real
libraries with predicted MS/MS spectra. Unfortunately, many existing C2MS models suffer
from problems with mass accuracy, generalization, or interpretability. We develop a new
probabilistic method for C2MS prediction, FraGNNet, that can efficiently and accurately
simulate MS/MS spectra with high mass accuracy. Our approach formulates the C2MS prob-
lem as learning a distribution over molecule fragments. FraGNNet achieves state-of-the-art
performance in terms of prediction error and surpasses existing C2MS models as a tool for
retrieval-based MS2C.

1 Introduction

Small molecule identification is a challenging problem with broad scientific implications. Determining the
chemical composition of a liquid sample (such as human blood or plant extract) is a critical step both in the
discovery of novel compounds and in the recognition of known compounds in new contexts. Tandem mass
spectrometry (MS/MS) is a widely employed tool for molecule identification, with applications ranging from
drug discovery to environmental science and metabolomics (Duenas et al., 2022} |(Gowda & Djukovicl 2014;
Peters, [2011; [Lebedev} 2013)). Analyzing the set of MS/MS spectra measured from a liquid sample can reveal
important information about its chemical constitution: each spectrum acts as a chemical signature that can
help identify a molecule in the sample.

The MS/MS spectrum to compound (MS2C) problem is the task of inferring the structure of a molecule
from its mass spectrum. Existing MS2C workflows often rely on comparing the spectrum of an unknown
molecule against a library of reference MS/MS spectra with known identities. However, spectral libraries
are far from comprehensive. The largest public MS/MS library, NIST23 (Stein, 2023)), consists of 51,501
compounds and 2.4 million spectra. In contrast, the most commonly used chemical database, PubChem (Kim|
et al., [2019)), contains 119 million compounds at the time of writing. The huge gap in spectrum coverage
means retrieval-based MS2C might not work even for molecules that have previously been observed.

Many computational approaches attack the MS2C problem head-on by attempting to predict information
about the molecule from the MS/MS spectrum. Some models infer high-level chemical properties from the
spectrum (Dithrkop et al., [2015; [Voronov et al., |2022) and use these features to recommend likely candidate
structures from existing chemical databases (Diithrkop et al., [2015; |Dithrkop et al., [2019; |Goldman et al.,
2023bjc; [Bushuiev et al., 2025) or guide generative models towards potential matches (Stravs et al.l [2022)).
Other methods (Butler et al., 2023} [Shrivastava et al., 2021; |Wang et al., [2025; Bohde et al., [2025) directly
generate structures from the spectrum.

Compound to mass spectrum (C2MS) prediction can be viewed as an indirect approach for solving the MS2C
problem. Instead of attempting to infer structural features from the MS/MS spectrum, C2MS models work
by boosting the effectiveness of existing retrieval-based MS2C workflows. Accurate C2MS models can predict
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MS/MS spectra for millions of molecules that are missing from spectral libraries, improving coverage by orders
of magnitude. This kind of library augmentation has been a mainstay in retrieval-based MS2C workflows
for over a decade (Wolf et al. 2010; |Allen et al., [2015; [Wishart et al., [2018]) and has led to the successful
identification of many novel compounds (Skinnider et al., |2021; [Wang et al., [2023; |Qiang et al., [2024]).

Despite numerous advances, challenges with C2MS remain (Schymanski et al., 2017; |Bushuiev et al., [2024).
Many existing approaches cannot predict MS/MS spectra with high mass accuracy; this loss of information
can be harmful in MS2C applications (Kind et al. 2018). Model interpretability is important for manual
validation of MS/MS predictions, yet many models operate as black boxes. Finally, generalization to new
compounds is difficult given the limited availability of training data.

In this work, we make the following contributions:

o We introduce FraGNNet, a novel method for MS/MS spectrum prediction that integrates combinatorial
bond-breaking methods with principled probabilistic modelling.

e We argue that this approach meets key requirements in the areas of prediction error, mass accuracy
and interpretability.

e Through comparisons with strong baseline models, we demonstrate that FraGNNet achieves
state-of-the-art performance on MS/MS spectrum prediction and compound retrieval tasks.

2 Background

At a high level, MS/MS spectrometry provides information about a molecule’s structure by measuring how it
breaks down. The experimental process is outlined in Figure[I] First, molecules in the sample are ionized: at
this stage they are referred to as precursor ions, because they have not yet undergone fragmentation. In liquid
samples, each molecule may become associated with a charged adduct during ionization. For example, if the
adduct is a hydrogen ion HT, an [M+H]" precursor ion will form. Following ionization, the mass to charge
ratio (m/z) of each precursor ion is subsequently measured using a mass analyzer. Once the precursor m/z
values have been measured, ions of a selected m/z are isolated and subjected to fragmentation for further
analysis. The fragmentation process is typically facilitated by energetic collisions with neutral gas particles,
and is influenced by experimental parameters such as collision energy. In general, higher collision energy
results in more extensive fragmentation.

A fragment is defined as a molecule composed of a subset of the atoms in the original precursor molecule. The
fragmentation process involves chemical reactions that cause the stochastic breakage and formation of bonds
in the molecule. After fragmentation, the resulting fragment ions are sent back to the mass analyzer for m/z
measurement, producing a distribution over m/z values that is called the MS/MS spectrum. It is possible for
different fragments to have nearly identical m/z, complicating analysis of the spectrum. Throughout this
work, we focus our analysis on [M+H] T spectra: as z is always +1, the spectrum can be directly interpreted as
a distribution over masses. However, our methods can be trivially extended to many other types of adducts.

Mathematically, an MS/MS spectrum Y can be represented as a finite set of pairs {(m;, P(m;))}; where
each mass m; has an associated probability P(m;). We refer to each individual pair (m;, P(m;)) as a peak,
where the mass m; (measured in Daltons or Da) is called the peak location and the probability P(m,) is
called the peak intensity. The precision of the peak locations is commonly referred to as the mass accuracy.
The C2MS problem can be formulated as a standard supervised learning task. The dataset is composed of N
tuples {(X;, Yi)}il\il where X; is a molecule and Y; is its associated MS/MS spectrum. The goal of a C2MS
model is to predict Y; from X;. The set of masses in a particular spectrum Y; is denoted as M;.

Every molecule can be represented as an undirected molecular graph G = (V, E). Each node a € V represents
an atom in the molecule with an associated element label w, € Q (where Q = {C,H,N,O,P,S,...} is a
finite set of common elements) and each edge b € E represents a covalent bond between atoms. A molecular
formula is a representation of the molecule that captures only the quantity of each type of atom present in
the graph. For example, the molecule methylaminomethanol (Figure @ has a molecular formula of CoH7NO,
which means that its molecular graph contains two carbon atoms, seven hydrogens, one nitrogen, and one
oxygen.
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Figure 1: Overview of MS/MS spectrometry: molecules in the sample are ionized to form precursors, filtered
by precursor mass (100 Da), and sent for fragmentation. The fragmentation process stochastically produces
fragments with mass values of 25, 50, 75 Da. The distribution of precursor and fragment mass values forms
the spectrum.

Peak annotation is the process of linking peaks in an MS/MS spectrum to chemical information. Practitioners
often use these annotations to interpret the spectrum: in the context of MS2C, these annotations can help
users compare possible candidate molecules by facilitating the incorporation of domain knowledge (Steckel &
[Schlosser}, [2019; [Johnson & Carlson, 2015). When a peak is associated with a subformula of the precursor
molecular formula, this is called a formula annotation; similarly, when a peak is associated with a fragment
of the precursor molecule this is called a fragment annotation.

3 Related Work

The increasing availability of small molecule MS/MS data has lead to a proliferation of machine learning
models for C2MS prediction. Existing methods can be broadly grouped into two categories, binned and
structured, based on how they represent the spectrum.

Binned methods approximate the spectrum by discretizing the mass range into a fixed number of equally sized
bins, each with an associated intensity. This simplifies the spectrum prediction problem to a vector regression
task, which can be readily solved without extensive domain-specific model customization. Binned approaches
generally vary based on the strategy they employ for encoding the input molecule: multi-layer perceptrons
2019), 2D and 3D graph neural networks (Zhu et al., 2020; [Li et all 2022} [Hong et al., 2023; [Park|
2024), and graph transformers (Young et al [2023) have all been used successfully. However, selecting
an appropriate bin size can be challenging: bins that are too large result in loss of information, while bins
that are too small can be overly sensitive to measurement error and yield high-dimensional output vectors.

Structured approaches sidestep the binning problem by modelling the spectrum as a distribution over chemical
formulae. This representation allows for arbitrarily high mass accuracy, since the formula masses can be used
to determine peaks locations with precision. Some methods predict the formula distribution directly, using
either autoregressive formula generation (Goldman et al. [2023a) or a large fixed formula vocabulary (Murphy|
et all 2023). Others rely on recursive fragmentation (Wang et al/, [2021} [Zhu & Jonas| 2023} Nowatzky et al.,
2025)) or autoregressive generation (Goldman et al., [2024) to first model a distribution over fragments, then
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Figure 2: Overview of the FraGNNet C2MS model. The input molecule (G, red box) is processed into an
approximate Fragmentation DAG (G ra, yellow box) and independently embedded by the Molecule GNN
(gp=, orange box). Information from the DAG is combined with the molecule embedding and processed
by the Fragment GNN (g§*¢, blue box). Output MLPs (brown boxes) are applied to each fragment node
n in the DAG to predict a per—node distribution over formulae (purple boxes), which can be mapped to a

distribution over masses (green boxes) and summed across nodes to create the MS/MS spectrum.

map this to a distribution over formulae. Structured C2MS models tend to be more interpretable, since each
peak is always associated with a formula (and possibly one or more fragments). However, they can also be
slower than binned approaches due to the increased complexity of the spectrum representation.

CFM-ID (Allen et all [2015; Wang et al.| 2021) and ICEBERG (Goldman et al., [2024)) are structured C2MS
models that explicitly model fragmentation. Like FraGNNet, both approaches algorithmically generate
fragments (substructures) of the input molecule and predict a distribution over those fragments. Their
principal distinction, however, lies in the specific strategy for fragment generation. CFM-ID employs a
deterministic bond-breaking algorithm and incorporates chemistry domain knowledge to compute a set of
plausible fragments. This approach benefits from consistent fragment generation and strong chemical priors;
however, it does not scale well to larger molecules and datasets. In contrast, ICEBERG uses a learned model
to autoregressively generate fragments. This approach has proven to be overall more accurate and scalable
than CFM-ID (Goldman et al.|2024)), but it relies on a stochastic fragment generation process that can result
in errors. FraGNNet takes a pragmatic approach: like CFM-ID, it employs a deterministic algorithm to
generate a comprehensive set of fragments; however, by relaxing chemical constraints it can achieve greater
efficiency and scale to larger compounds like ICEBERG.

4 Methods

4.1 Overview

The goal of our method is to predict the MS/MS spectrum for an input molecular structure. The model
works in two stages: first, a recursive bond-breaking algorithm (Section generates a set of plausible
molecule fragments. Then, a probabilistic model (Section parameterized by a graph neural network
(Section predicts a distribution over these fragments. The fragment distribution induces a distribution
over molecular formulae, which is converted to an MS/MS spectrum using formula masses (Section . This
approach allows for extremely high mass accuracy and probabilistic formula and fragment annotations.
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4.2 Recursive Fragmentation

Recall our definition of the molecular graph G = (V, E) from Section [2| where nodes a € V' represents atoms
and edges b € E represent bonds. Let S(G) be the set of connected subgraphs of the graph G.

Definition 4.1. The graph F(G) = (F1(G), F2(G)) is called a fragmentation DAG with respect to the graph
G if the following properties hold:

1. Each node n € F1(G) corresponds to a connected subgraph G,, € S(G)

2. Each edge e € F5(G) from node u € F1(G) to node v € F1(G) exists if and only if G, € S(G) is a
connected subgraph of G,, € S(G) that can be constructed by removing a single edge from G,, and
selecting one of the resulting connected subgraphs.

Note that the root node r of F(G) always corresponds to the original graph G, and the leaves of F(G)
correspond to individual atoms a € V.

Our method assumes that most fragments that contribute to an MS/MS spectrum can be modelled as products
of a sequence of bond breakages. Such fragments appear as nodes n € F;(G), and their fragmentation history
can be represented as a path from the root r to n. We can derive a set of molecular formulae {f,, : n € F1(G)},
where each f, represents the molecular formula of G,,. This set can be used to calculate the set of possible
peak locations in the spectrum, M(G) = {m,, : n € F1(G)} where m,, = mass(f,) is the monoisotopic mass
of molecular formula f,.

The fragmentation DAG F(G) can be a useful tool for spectrum prediction (Wang et al., [2021; |Goldman
et al., |2023a} |2024)), providing information about peak locations and relationships between fragments in the
spectrum. However, computing F(G) from G through exhaustive edge removal is expensive, requiring O (2|E |)
operations. Inspired by previous approaches from the literature (Wolf et al., 2010; Ruttkies et al., |2016;
Allen et all |2015} Ridder et al. 2014} |Goldman et al., [2024)), we approximate F(G) using a few simplifying
assumptions.

Definition 4.2. The graph H(G) = (H1(G), H2(G)) is called a heavy atom skeleton of G if H(G) is the
largest connected subgraph of G such that w, # H (hydrogen) for all a € H1(G).

Since |H2(G)| is often smaller than |E| (in the NIST20 MS/MS dataset, ~ 43% smaller on average), calculating
F(H(G)) is considerably faster than calculating F(G). We employ a recursive edge removal (é.e., bond-
breaking) algorithm that only considers nodes that are at most d hops away from the root r, producing a
connected subgraph F4(H(G)) of F(H(G)) (see Algorithm |1|for details about our implementation).

For simplicity of notation, we refer to F¢(H(G)) as G za, with vertex set Vza and edge set Era. By definition,
each node n € Vza is associated with a fragment subgraph G,, € S(H(G)) that does not contain any hydrogen
atoms. Since real fragments often include hydrogens, we employ heuristics to bound the number of hydrogens
associated with each G,,. This approach enables us to account for hydrogens while avoiding the computational
cost of explicitly modeling their positions in the graph.

Let h, be the number of hydrogen atoms in original molecular graph G that are connected to an atom
in the fragment subgraph G,,. We define the set {h,, — j,...,h, + j} as the range of hydrogen counts for
the subgraph G,,, where j is an (integer) tolerance parameter. This induces a set of possible molecular
formulae {fn_j, cee f,{} and associated masses {m;j, e 7771%}’ where fi is f,, with the addition of h,, + i
hydrogens, and m}, is its corresponding mass. For example, if f, = C304, h, = 3, and ¢ = 2, then
m¢, = mass(C20,Hs) = 178.0477 Da.

Definition 4.3. The set
M(G,d,j) = U {m;j,...,mfl}
n€EVq

is the set of masses derived from the approximate heavy-atom fragmentation DAG Gz« with hydrogen
tolerance j.
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Empirically, we find that calculating ]\%(G7 d,j) (Definition with d € {3,4} and j = 4 can effectively
capture most of the total peak intensity in real MS/MS data (see Table [3)).

4.3 Probabilistic Formulation

Our model can be interpreted as a hierarchical latent variable model, whose latent distributions depend on a
molecular graph G and its approximate fragmentation DAG G za.

To begin, we define the following latent probability distributions:

Definition 4.4. Let Py(n) be a discrete finite probability distribution over the DAG nodes N = Vrza,
parameterized by a neural network gg.

Definition 4.5. Let P(f|n) be a discrete finite conditional distribution between DAG nodes N and associated
formulae F = J,cn {f77,..., f]}, parameterized by a neural network go.

n

Both distributions depend implicitly on the molecular graph G, but for clarity of notation we have omitted
this. Note that for each node n, Py(f|n) has support over 2j + 1 formulaelT]

The joint distribution Py(n, f) = Py(n) Py(f|n) can be loosely interpreted as identifying which substructures
are generated during fragmentation, with Py(n) modelling the heavy atom structures of the probable fragments
and Py(f|n) modelling the number of hydrogens associated with each of those fragments.

By marginalizing Py(n, f) over the nodes n, it is possible to calculate a distribution over molecular formulae
Py(f). Since each formula f has an associated mass, the discrete distribution Py(f) can be easily converted
to a continuous distribution Py(m) over masses. Following [Allen et al.| (2015), we formulate Py(m) as a
mixture of truncated univariate Gaussians as outlined in Equation [T}

Py(m) = > Py(f) P(m|f) (1)
!

The conditional P(m|f) is a narrow truncated Gaussian centered on the formula mass, u(f) = mass(f), with
variance o(f) proportional to f and truncation occurring at +1 standard deviation from the mean. This
Gaussian model approximates the error distribution of the mass analyzer (Allen et al., [2015]). At inference
time it is convenient to approximate P(m) as a discrete distribution with P(m|f) = §(mass(f)), where 4 is
the Dirac delta function.

Using Bayes Theorem, we can calculate another latent distribution Py(n|f) that identifies how much each
fragment n is contributing to a predicted peak centered at formula f. We use Py(n|f) to predict fragment
annotations for each output peak (see Figure |3|and Section [5.4)).

In Appendix we describe analogs of Py(n), Py(f|n), and Py(n|f) that account for fragment subgraph

isomorphism.

4.4 Neural Network Parameterization

The distributions Py(n) and Py(f|n) are parameterized by a two-stage graph neural network (GNN, Battaglia
et al.[2018)) as defined by Equation

90(G,Gra) = gg™° (g5™(G), Gra) (2)

The first stage ghot, called the Molecule GNN, operates on the input molecular graph G. The second stage

gEMe. called the Fragment GNN, combines information from the fragmentation DAG and the molecule

embeddings to predict the distributions Py(n) and Py(f|n).

1There is additional filtering for chemical validity which may remove some formulae, but for clarity this has been omitted.
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4.4.1 Molecule GNN

The Molecule GNN g% takes the input molecular graph G and outputs embeddings for the atoms in the

graph. The atom embeddings iL,(IO)

(see Appendix [A.4]).

GNN models work by iteratively updating node states through the aggregation of neighbourhood information.
gp’= uses the GINE architecture (Xu et al.l 2019; Fey & Lenssen| 2019), which incorporates both node and
edge information in its updates. The GINE update rule is given by equation [3| where [ is the GNN layer
index, I € {1,..., L1}, and g is a standard multi-layer perceptron (MLP):

and bond embeddings Béo) are initialized with specific features from G

R = o [V + 3T ReLU(RY + hy) (3)
u€N(a)

The final atom embeddings B((ILI) are subsequently passed to the Fragment GNN ¢f*¢ for further processing.

4.4.2 Fragment GNN

The Fragment GNN ¢f®¢ is another GINE network that propagates information along the approximate
fragmentation DAG. Each DAG node n € V. is featurized using information about its associated subgraph
G, precisely described in Equations |4 and |5f The vector B%O ) is a concatenation of three terms: lAsz is the
average atom embedding for atoms in G,; h/ is an embedding of the subgraph formula f,; and B;’ll is an

embedding of the depth in the DAG at which node n is located.

hO = by | R R (4)

R 1 -

hy = == > hi (5)
|Vn| aeVn

The edge embeddings h") are also initialized with subgraph information: they capture differences between
adjacent DAG nodes. Refer to Appendix [AZ5] for full details.

The DAG nodes are processed by the Fragment GNN in a manner that is similar to Equation [3] After
L5 layers of processing, a small output MLP is applied to each node embedding B%LZ), producing a 25 + 1
dimensional vector representing the unnormalized logits for Py(n, f) for each i € {—j,...,j}. The other
latent distributions in Section [{.3] are calculated from the joint through normalization, marginalization, and
application of Bayes Theorem.

After performing model ablations (see Appendix , we discovered that edge information could be omitted
without degradation in performance, allowing for faster training and inference. As a result, the experiments
in Section [5| used a variant of g)"#4¢ that excludes the neighbourhood aggregation term from the GINE
update, effectively acting as a node-wise MLP.

4.5 Loss Function

We fit the parameters of the model § with maximum likelihood estimation, using stochastic gradient descent.
The loss function is based on the negative log-likelihood of the data, defined in Equation [G}

I
Laa(®) = 73 3 ~P(m)log Py(m) (6)

i=1 meM;

For each spectrum (indexed by i), a subset of the peak masses M?S C M; are defined to be Outside of
the Support (0OS) if they are far enough from away the predicted set of masses M(G;,d, j) such that their
predicted probability is 0 (Equation [7)).
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Figure 3: Example Spectrum Prediction with Peak Annotations: A real spectrum (blue) for a molecule
from the test set, Adiphenine, is compared with its corresponding FraGNNet-D4 prediction (red). The five
most intense peak predictions are annotated with formulae and up to three probable fragment structures.
The fragment annotation for peak 5 clearly corresponds to the precursor ion (i.e., the entire graph). The
model is uncertain about the fragment annotation for peak 4, giving equal probability (0.123) to three related
structures and significant probability (0.631) to other less likely structures.

The rest of the masses MS = M; — M?° are deemed to be Inside of the Support (IS).

P(MP% = > P(m) (7)

meM;: Py (m):O

Modelling the OS probability can provide useful information about the reliability of the predicted spectrum
(Appendix . FraGNNet is trained to predict Py(MPS), an estimation of P(MP%). Adjusting the loss
function Ly (0) to incorporate the OS cross-entropy term yields Equation

= IZ z m) log Py(m) — P(MP%)log Py(MP9) (8)

i=1 meMIS

In cases where P(MPS) > 0, perfectly optimizing Ly.(6) yields predictions that have (incorrectly) redis-
tributed P(MPS) to other peaks. This undesirable behaviour can be avoided by minimizing £(6) instead.

4.6 Latent Entropy Regularization

Entropy is a useful tool for interpreting the model’s latent distributions. Ho(NN) quantifies the diversity of
fragments that contribute to the spectrum; Hy(F|n) describes variability in molecular formulae (hydrogen
counts) for each fragment; Hy(N|f) describes variability in fragment annotations for each predicted formula.
For each latent variable Z € {N, F, F|n, N|f}, we define a normalized entropy H(Z) = H(Z)/log(|Z|).
Normalization corrects for differences in support size, facilitating direct comparison of latent entropies across
molecules of different sizes. Since entropy is differentiable, normalized latent entropy and prediction error
can be jointly optimized using gradient-based methods. Incorporating normalized entropy into the objective
function, as demonstrated in Equation [0} effectively imposes entropy regularization on the latent distributions.
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Table 1: Spectrum Prediction Performance on the NIST20 MS/MS Dataset. Cgn is binned cosine similarity
(0.01 Da bins), Cyun is the Hungarian cosine similarity (10 ppm tolerance). As NEIMS, MassFormer, and
ICEBERG have binned outputs, they cannot be scored with Cyyy. Means and standard deviations are
reported for 5 random seeds, with best scores in bold.

Model InChIKey Scaffold
Cpmv 1 Caun 1 Cpiv 1 Caun 1
FraGNNet-D4 | 0.736 &= 0.002 0.709 & 0.002 | 0.678 £ 0.005 0.654 4 0.006
FraGNNet-D3 0.721 4 0.002 0.693 £ 0.002 0.659 £ 0.001 0.633 £ 0.001
GrAFF-MS 0.596 £ 0.005 0.602 £ 0.004 0.520 £ 0.005 0.518 £ 0.004
ICEBERG 0.707 £ 0.001 - 0.636 + 0.002 -
MassFormer 0.639 + 0.002 - 0.562 + 0.003 -
NEIMS 0.635 + 0.001 - 0.546 £+ 0.003 -
Precursor-Only | 0.319 4 0.000 0.285 £ 0.000 0.313 £ 0.000 0.280 = 0.000
£REG(9) = ﬁ(e) + aNHg(N) + aFHg(F) + OZF|nH9(F|TL) + CtN‘ng(NLf) (9)

The tunable hyperparameters az € {an,ar,ap),,ay|s} control the influence of the entropy regularizers.

Since Lyee(f) is minimized, setting az < 0 will maximize the corresponding normalized entropy ﬁg(Z ), and
vice versa. Entropy regularization can be useful when assessing consistency of fragment annotations, as
demonstrated in Section [(.41

5 Experiments

5.1 Spectrum Prediction (C2MS)

We evaluated C2MS performance on a held-out portion of the NIST20 MS/MS dataset (Appendix ,
comparing FraGNNet with other binned and structured prediction models from the literature. ICEBERG
(Goldman et al., [2024)) is a structured C2MS approach that uses neural networks to generate molecule
fragments and map them to a predicted spectrum. GrAFF-MS (Murphy et al.| |2023) is a structured approach
that predicts a distribution over a static library of common chemical formulae. MassFormer (Young et al.l
2023) and NEIMS (Wei et al., [2019) are both binned approaches: the former uses a pretrained graph
transformer model (Ying et al.| 2021) to encode the molecule, while the latter relies on domain-specific
chemical fingerprint representations (Rogers & Hahn, [2010)). Precursor-Only is a trivial baseline that only
predicts a peak centered on the mass of the precursor formula. For more details on the baseline models, refer

to Appendix [ATT4]

The results are summarized in Table[l}] FraGNNet-D4, a version of our model that uses a d = 4 approximation
of the fragmentation DAG, clearly outperformed other models in terms of cosine similarity. Increasing
fragmentation depth from d = 3 (FraGNNet-D3) had a positive impact on performance, as expected.

5.2 Compound Retrieval (MS2C)

Each model was also evaluated in a retrieval-based MS2C task. Our setup is similar to previous works
(Goldman et al., 2024} Murphy et al., [2023)): for each molecule X; and associated MS/MS spectrum Y; in
the test set (= 4,000 pairs, Appendix a candidate set C; is constructed from X; and 49 other molecules
sampled from PubChem (Kim et al [2019). Each C; € C; — {X;} is selected to have high chemical similarity
with X; as measured by Tanimoto 51m11ar1ty between chemical fingerprints (Rogers & Hahnl, [2010)). The
C2MS models are tasked with predicting a set of spectra Y; for molecules C; € C;. The spectra Y; are ranked
by their cosine similarity with the real spectrum Y;, inducing a ranking on the molecules C;. The models
are scored based on their ability to correctly rank X; in the Top-k. On the Scaffold split, FraGNNet-D4
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outperformed all baseline models for all values of k (Figure , and its rank distribution was more skewed
towards lower values of k (Figure . A similar analysis on the InChIKey split is presented in Figure [7]in
the Appendix.
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Figure 4: Compound retrieval results on the Scaffold split: Top-k Accuracy @ for all values of 1 < k <50
and Predicted Rank Distribution (]ED over ranks 1-10. Average over 5 seeds is reported; error bars indicate
standard deviation.

5.3 Formula Annotations

Peak annotations (Section [2)) are an important tool in the interpretation of MS/MS spectra. The FraGNNet
model can produce both formula and fragment peak annotations (Figure [3|is an example). In this section we
assess the quality of FraGNNet’s formula annotations, and in Section [5.4] we evaluate its fragment annotations.

The NIST20 dataset provides expert-curated formula annotations for most spectra; for more details on these
annotations, refer to Appendix We formulate the formula annotation task as a classification problem.
Given a real spectrum P(m), each real peak m € M has a (possibly empty) set of associated expert formula
annotations A(m) = {f% }; that are assumed to be correct. Similarly, in the predicted spectrum Py(m’) each
predicted peak m’ € M’ has a (nonempty) set of associated formula annotations A(m') = {f%,}..

Using a relative mass tolerance of 10 ppm, we match peaks in the predicted spectrum m’ with peaks in the
real spectrum m and identify overlap in their associated formula annotation sets A(m') and A(m). This
allows us to calculate recall of annotated peaks in the real spectrum (Equation and precision of annotated
peaks in the predicted spectrum (Equation [29)), as well as their intensity-weighted counterparts (Equations
and and associated F} scores (Equatio and .

The results are summarized in Table[2] FraGNNet provided the best balance of recall and precision, as indicated
by superior F; scores. GrAFF-MS achieved slightly higher recall and much lower precision; ICEBERG offered
slightly higher precision but lower recall. GrAFF-MS relied on a static formula library, which yielded a
distribution over roughly 10,000 formulae for each input compound. By comparison, FraGNNet’s formula
distribution was typically much smaller, with a median support size of 679 formulae (Table . Note that
GrAFF-MS directly used NIST formula annotations to define its formula library (refer to Appendix
for full details); in contrast, the other models did not rely on expert annotations for training or inference.

5.4 Ensembling and Fragment Annotations

Fragment annotations provide greater model interpretability than formula annotations. FraGNNet’s latent
distribution Py(n|f) naturally provides a map from formulae f to DAG nodes n and their associated fragments
Gr. Py(n|f) can be interpreted as a fragment annotation distribution, indicating the likelihood of fragment
G, contributing to a peak centered around mass(f) (see Figure [3| for an example). However, the ground
truth distribution P(n|f) is generally unknown and difficult to measure experimentally. In principle, it is
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Table 2: Formula Annotations (Scaffold Split). AR is Annotation Recall, AWR is Annotation Weighted
Recall, AP is Annotation Precision, AWP is Annotation Weighted Precision, AF is Annotation F; score,
AWF1 is Annotation Weighted F; score. Means and standard deviations (where applicable) are reported for
5 random seeds, with best scores in bold.

Model | AR1 AWR 1§ AP f) AWP 4 AF1 ) AWF1 4
FraGNNet-D4 0.81 0.90 0.98 1.00 + 0.00 0.89 0.95 + 0.00
GrAFF-MS 0.95 0.98 0.61 0.81 & 0.01 0.74 0.88 £ 0.01
ICEBERG 0.66+0.00 0.81+£0.00 0.99 =+ 0.00 - 0.79 = 0.00 -

possible for multiple fragments (with the same molecular formula) to contribute to the same peak, meaning
that the true P(n|f) is not necessarily degenerate.

Unlike the experiments in the previous section, there are no expert-curated fragment annotations that
can be used for comparison. Rather than measuring the accuracy of the model annotations, we focus
instead on measuring their consistency. In particular, we attempt to construct models with different fragment
distributions that nonetheless achieve comparable spectrum prediction performance. Disagreement in fragment
annotations between models that perform equally well would indicate that the model explanations are variable
and therefore unreliable.

To achieve this, we construct four FraGNNet-D4 ensembles, each with a different annotation distribution,
by tuning the latent entropy regularization parameters (Section . The Baseline Entropy configuration
represents a standard ensemble of K models without entropy regularization (o = 0). The High Entropy
and Low Entropy configurations consists of K models with entropy regularization (ay|y < 0 and ap|s > 0,
respectively). The Mized Entropy configuration consists of K/3 models each of the Baseline, Low, and
High Entropy configurations. Except for the entropy regularization weights, all ensembles use the same
hyperparameters and K = 15 different random seeds for initialization and training.

Let {(‘)1c D0k ~ P(Q)}szl denote the set of parameters for an ensemble of K models. We perform ensembling

in the latent space (see Appendix for details). Let PX(n|f) and H¥ (N|f) denote the latent distribution
and latent normalized entropy (respectively) of a ensemble of K models. For each configuration, Figure
compares the behaviour of the individual models to the overall ensemble, in both the output space and the
latent space. Ensembling provided a modest increase in cosine similarity (4.2 — 4.3%) and a somewhat larger
increase in normalized entropy (7.6 — 11.4%). The observed entropy increases are consistent with theory; for

a short proof see Appendix

Focusing now on the ensemble metrics, we can see that all four model configurations achieved similar MS/MS
spectrum prediction performance (Cyyn =~ 0.67) despite differing markedly in normalized entropy: the Low
Entropy configuration only had = 71% of the normalized entropy of the High Entropy configuration (0.37 vs
0.52, respectively). This confirms FraGNNet models with different fragment annotation distributions can
achieve similar C2MS performance.

Viewed in isolation, these results might suggest that FraGNNet’s fragment annotations are inconsistent
and raise questions about their reliability. However, we also investigated the top-1 fragment agreement
(i.e., PX(n|f) mode consistency) between ensemble configurations. This behaviour was measured using
pairwise fragment annotation agreement (PFA, Equation and consensus fragment annotation agreement
(CFA, Equation [39). In the NIST20 MS/MS test set, PFA > 82% (Figure and CFA ~ 76% across all
model configurations. These results demonstrate that the modes of the annotation distributions Py(n|f)
were relatively consistent and robust to variations in latent entropy. In Appendix we performed a
similar analysis focusing on Py(71|f), the version of the annotation distribution that accounts for fragment
isomorphism (Appendix . In this case the top-1 agreement was even higher (PFA > 91%, CFA ~ 89%
consensus).

In summary, we have shown that it is possible to achieve comparable performance with ensembles that differ
significantly in their normalized latent entropies HX (N|f). However, despite these entropy differences, the
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models tend to agree on which fragment annotation G,, is most appropriate for a given formula f and its
associated peak at mass(f). Although we cannot establish the true fragment annotations without specialized
measurements (van Tetering et al., 2024), our experiments indicate that the FraGNNet’s explanations remain
robust to perturbations in latent entropy, which is critical for ensuring reliability.

0.8
- [ Individual I Ensemble
= Baseline
8 o7 +4.2% +4.3% +4.2% +4.2%
£
n
8 0.6
T Low
o
O
0-5 Baseline Low High
0.6 High 84% 82%
2 [J Individual M Ensemble
o +7.6%
k=
S 05 .
- +11.4% Mix
9]
N
© 0.4
IS
_
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.3+ 2
0.3 Baseline Low High Q
(a) Crun and Hy(N|f) (b) PFA

Figure 5: @) For each ensemble configuration (Baseline, Low, High, Mix), the cosine similarity Cgyn and
normalized entropy of the annotation distribution Hy (N|f) are reported. For both metrics, the average score
of the individual models (Individual) is compared with the score of the ensemble (Ensemble). Each ensemble
consists of K = 15 models. Standard deviations for the K individual models are plotted as error bars. (]ED
Pairwise fragment annotation agreement (PFA) for all ensemble combinations are plotted in a matrix. The
consensus agreement (CFA) is ~ 76%.

6 Discussion

In this work we introduce FraGNNet, a deep probabilistic model for spectrum prediction. Our work shows
that pairing combinatorial fragmentation with graph neural networks can achieve state-of-the-art C2MS
performance. FraGNNet is unique in its interpretable probabilistic representation of fragmentation. Features
such as OS prediction and tunable entropy regularization further differentiate it from existing models. Strong
results in compound retrieval and peak annotation demonstrate potential utility in MS2C applications.

Several avenues exist to enhance our method. First, the fragmentation algorithm currently depends on
recursive edge-removal operations, which could be parallelized to accelerate runtime. Second, the algorithm
fails to account for some fragments, as evidenced by unexplained OS peaks in the spectra. These peaks
may arise from complex chemistry, such as cyclizations, that dramatically expand the fragment search space
and are therefore challenging to model. One potential remedy is to develop a sequential reaction sampler
that can generate fragments beyond simple bond-breaking. Alternatively, combining FraGNNet with a more
flexible C2MS model, such as a formula predictor like GrAFF-MS, could be an effective method of capturing
OS peaks without explicitly modelling their fragments. Finally, to broaden FraGNNet’s practical utility,
it is important to evaluate performance on unmerged spectra and under a broader range of experimental
conditions, including different instrument platforms and precursor adducts.
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A Appendix

A.1 Recursive Fragmentation Algorithm

Algorithm 1 RecFrag

Input: graph G = (V| E), max depth d, current depth d’
Initialize DAG nodes Vp = {}, DAG edges Er = {}
if d <d then

S=0

I =1D(V,E)

for e = (u,v) € E do
E' =FE —{e}

(V*, E*) = BFSCC(u, V, E’)
I =1ID(V“, E¥)
(Vv, E¥) = BFSCC(v,V, E’)
1" =1ID(VY, EY)
S = SU{(VY, EY), (VY EY)}
Ve=Vr U {IU,IU}
Er = EpU{(I,I%),(I,I")}
end for
for G* = (V5 E®) € S do
(VZ, E%) = RecFrag(G®,d,d’ + 1)

Ve=Vr U V;
FEr=FEpU E%
end for
end if

Return (Vg, Er)

The approximate fragmentation DAG Gz is constructed by calling Algorithm [T] on the heavy-atom skeleton
of the molecule H(G), with initial depth parameter d’ = 1. BFSCC is a breadth-first search algorithm that
returns the set of nodes and edges in a graph that can be reached from a given input node. We apply BFSCC
to identify connected components (fragment subgraphs) of H(G) after each edge removal. ID is a function
that maps every subgraph of H(G) to a unique integer id (our implementation just uses an enumeration).

We apply a post-processing step that merges fragments ni,ny € Vp with the same atom sets V™ = V"2,
These fragments arise when bond are removed from non-linear structures in the molecule, such as rings. The
merging works as follows: the nodes {n;}; in the DAG whose associated fragment subgraphs {G™}; all have
the same atom set V" are removed from G+ and replaced with a new DAG node m that retains all edges
of the removed nodes. The associated fragment subgraph G™ = (V™  E™) is defined as the vertex-induced

subgraph of V™ (Equations [10| and :

ym=vnr (10)
E"={(u,v) e E:uecV"AveV"} (11)

After post-processing, it is possible to assign each node n in the DAG a unique ID based only on its atom set
V™. Note that the DAG node merging can introduce self-edges in G z«, implying that G z« is not always a
true DAG in practice.

Figure [f] is a visualization of the full fragmentation DAG F¢ for an example molecule. Since this molecule is
small and linear, the resulting DAG consists of only 10 nodes and 19 edges.
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Figure 6: DAG Visualization: the approximate fragmentation DAG Gra (d = 3) for a small molecule,
methylaminomethanol. The root node is represented by the heavy-atom skeleton of the molecule H(G),
and each other node is represented by a connected subgraph of H(G). Carbon atoms are represented by C,
nitrogen atoms by N, oxygen atoms by O.

Table 3: Fragmentation DAG Statistics over the NIST20 MS/MS Dataset. PP is peak precision, PWP is
peak weighted precision, PR is peak recall, PWR is peak weighted recall.

D3 (d=3,j =4) D4 (d=4,j =4)
STATISTICS MIN  25%  50% 75% Max | MIN  25%  50% 5% Max
# FORMULAE f 4 323 527 838 7239 4 388 679 1160 13146
# NODES n 10 167 280 474 5022 10 333 677 1392 32902
# NODES 7 9 104 173 308 4518 9 183 379 865 31688
# EDGES e 20 662 1156 2138 44952 20 2288 4790 10020 249138
PR 0.00 0.51 0.64 0.77 1.00 0.00 0.63 0.75 0.85 1.00
PWR 0.00 0.75 0.88 0.96 1.00 0.00 0.86 0.94 0.98 1.00
PP 0.00 0.05 0.08 0.13 0.53 0.00 0.04 0.08 0.13 0.52
PWP 0.00 0.04 0.07 0.12 0.60 0.00 0.03 0.07 0.13 0.67

A.2 Fragmentation DAG Statistics

Table [3] describes various distributions related to the size of the approximate DAG G za and its associated
mass set M (G, d, j) under two different parameterizations. d = 3,j = 4 is the configuration for FraGNNet-D3,
and d =4, j = 4 is the configuration for FraGNNet-D4.

Let M be the set of masses in the spectrum (peak locations), and let M’ = M(G,d,j) denote the set of
masses given by the approximate DAG for molecule G. Peak Recall (PR, Equation is defined as the
fraction of peaks in the spectrum that can be explained by a DAG mass while Peak Weighted Recall (PWR,
Equation incorporates peak intensities; Peak Precision (PP, Equation and Peak Weighted Precision
(PWP, Equation are defined similarly.

PR = 1 Z I[3m e M’ : |m’ —m|< emax(m,200)] (12)
|M‘ meM
PWR — Z P(m) I[3m' € M’ : |m’ — m|< emax(m, 200)] (13)
meM
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1
PP = — Z I[3m e M : |m' — m|< emax(m, 200)] (14)
a2
PWP = z P(m)I[3m € M : |m’ — m|< emax(m, 200)] (15)
m/eM’

In our experiments we use a 10 ppm mass tolerance for peak matching (e = 107°).

A.3 Fragment Subgraph Isomorphism

In MS/MS spectrometry, it is possible for fragments with identical molecular structure to originate from
different parts of the molecular graph, having been created through distinct sequences of fragmentation steps.
In our model, this phenomenon is represented by pairs of DAG nodes n1,n2 € Vza whose corresponding
subgraphs G, = G, are isomorphic (i.e., there exists a node bijection between G,,, and G, that is both
label-preserving and edge-preserving).

With the exception of Py(f) (which does not involve fragments), each of the latent distributions from
Section can be adapted to account for fragment graph isomorphism. To describe this process precisely, we

rely on Definition and Corollary [A72}

Definition A.1. Let G be a finite set of labelled graphs {G;}!_;. Each G; is a member of one of K
isomorphism classes {Qk}kK:l, where K < I. Assume an arbitrary total ordering < for each isomorphic class
Gr. Let Z(G) C G be the set of graphs such that VG € Z(G) : AG; € G : G; € G A G <y, Gy.

Corollary A.2. VG;,G,; € 2(G) : G, # G; — G; 2 G;.

For each DAG node 7 such that Gz € Z({G,, : n € Vza}), we define Py(72) as the total probability of all
subgraphs isomorphic to G5 using Equation

P@= Y RO (16)

nEVJ_.d :Gp2Gp

The conditional distributions Py(f|7) and Py(7|f) are defined in a similar manner using Equations [17|and
respectively:

Pe(fln)fje(n)

nGV}_d:Gn%Gﬁ

@l = S PRl (18)

TLEV}-d:GnEGﬁ

These distributions can provide additional interpretability, as demonstrated in Appendix [A:17} Intuitively,
they remove excess entropy caused by uncertainty over the location in the molecule from which each fragment
originated.

In practice, we calculate the set Z({G,, : n € Vza}) by applying an approximate Weisfeiler-Lehman hashing
algorithm (Shervashidze et al., 2011} [Hagberg et al., |2008) to each subgraph G, : n € Vza and identify
isomorphism class membership with hash collisions.

A.4 Molecule Features

Our method for atom and bond featurization follows the approach taken by (Goldman et al.l 2024). The
features are summarized in Table[d] All discrete features are encoded using a standard one-hot representation.
The only continuous feature (Atom Mass) is scaled by a factor of 0.01.
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Table 4: Input Features for the Molecule GNN

FEATURE VALUES

AtoM TYPE (ELEMENT) {C,0O,N,P,S,F,Cl,Br,I,Se, Si}
ATOM DEGREE {0,...,10}

AToM ORBITAL HYBRIDIZATION {SP,SP2,SP3,SP3D,SP3D2}
AroM FORMAL CHARGE {-2,...,+2}

ATOM RADICAL STATE {0,...,4}

ATOoM RING MEMBERSHIP {TRUE, FALSE}

ATOM AROMATIC {TRUE, FALSE}

AToM MAss RT

ATOoM CHIRALITY {UNSPECIFIED, TETRAHEDRAL CW, TETRAHEDRAL CCW}
BoND DEGREE {SINGLE, DOUBLE, TRIPLE, AROMATIC}

A.5 Fragment Features

A.5.1 Fourier Embeddings

We use Fourier embeddings (Goldman et al., [2023a; Tancik et al., [2020) to represent certain ordinal features
such as molecular formulae and collision energy. Given an integer feature z € R, the corresponding Fourier

embedding ¢(z) can be calculated using Equation
27z
in | — 19
- ( T )‘ :| ( )

) (27rz >
sin [ —
T1

Compared to a standard one-hot encoding scheme, this approach makes it easier for the model to handle
inputs z at inference that have not been seen in training. The periods 7; are increasing powers of 2 (we use
T = 10 for our experiments).

g ey

A.5.2 DAG Node Features

The DAG node embeddings (Equation [4)) are initialized with formula information 71{; and fragmentation
depth information hZ. The formula embedding for DAG node n is a concatenation of Fourier embeddings
corresponding to heavy atom counts in G,,, described in Equation 20}

hl = H qS(ZwU:w) (20)

weN veEV),

The depth embedding B‘fl is a multi-hot representation of the fragment node’s depth in the DAG. The depth
set is defined as the set of path lengths between the root node and the fragment node n, and is always a
subset of {0, ...,d} where d is the fragmentation depth.

A.5.3 DAG Edge Features
The embeddings ﬁéo) are initialized for each directed edge e € Ers using Equation Assuming e travels

from node n to node t, let V, = V,, — V; be the set of atoms in G,, that are not in G;. As described in
Equation h? is simply the average of the atom embeddings in V..
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WO =h | ki (21)
N 1 -
he ==Y h{ (22)
|Ve| a€Ve

The ?L{f term is an embedding of the difference of node formulas f,, — f; using Fourier embeddings, similar to

ﬁfL These features explicitly capture neutral loss information that would otherwise need to be inferred from
the DAG.

As previously noted (Section [4.4.2)), for most experiments we used a version of the model that omitted DAG
edges; in those cases the edge features were also not included.

A.5.4 Collision Energy Embedding

Let Z; be the set of collision energies that were merged to create spectrum Y; for molecule X; in the dataset
(Appendix . The collision energy embedding is a representation of Z;. Each collision energy z € Z; is a
positive integer ranging from 0 to 200 (they are normalized relative to the mass of the precursor, see [Young
et al.[2023 for more details). The collision energy embedding hy is simply an average of Fourier embeddings
for each collision energy, described by Equation

A 1
hz =17 > f2) (23)

z€Z

The collision energy embedding hz is concatenated with the output Fragment GNN embedding i_u(le) for
each DAG node n € G ra before being passed to the output MLP.

A.6 Spectrum Similarity Metrics

Mass spectra are typically compared using a form of cosine similarity (Stein & Scottl [1994). The binned
approach (Wei et al., 2019; Young et al.l |2023; [Zhu et al., |2020) involves preprocessing the spectrum by
discretizing the mass range into B equally sized bins and summing the intensities for all peaks falling in the
same bin. This produces a B-dimensional vector of non-negative values that is amenable to standard cosine
similarity calculation. In our experiments, binned cosine similarity Cpgn is calculated with a bin size of 0.01
Da, resulting in B = 150,000 (we assume a maximum mass of 1500 Da).

An alternate approach to calculating cosine similarity involves comparing intensities of peaks that are close in
mass (Huber et al.l 2020; Murphy et al.| [2023). This method can be formalized as the linear sum assignment
problem below, where i indexes spectrum Y, j indexes spectrum Y and p;, p; are shorthand for P(m;), P('rhj)
respectively:

A pi Dy
Cagun(V,Y) = max Wis —
wi;€{0,1} Z “lpllz 15112
2 wig <1 (24)
s.t. Zj Wij <1
|m; — 1| < 7

We set the tolerance parameter 7; = 107° max(m;, 200) to reflect a thresholded 10 ppm mass error. As
this maximization problem can be solved efficiently using the Hungarian algorithm (Kuhn| [1955)), we call it
Hungarian cosine similarity. In the literature it is sometimes referred to as modified cosine similarity (Huber
et al., |2020). Note that the tolerance parameter only depends on the masses in spectrum Y, introducing an
asymmetry in the measure. When comparing a true spectrum with a predicted spectrum (as is typically the
case), we use the convention of setting Y to be the true spectrum.
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A.7 Out-of-Support Prediction

Table 5: Out-of-Support (OS) Prediction performance on the NIST20 Dataset. Means and standard deviations
are reported for 5 random seeds. Best scores (where applicable) are in bold.

Split Model | P(MOS) Py(MOS) Srv (1)

InChIKey FraGNNet-D3 0.171 £0.000 0.191 £0.007  0.080 £ 0.002
InChlKey FraGNNet-D4 0.098 +0.000 0.115+0.003 0.057 4+ 0.001

Scaffold  FraGNNet-D3 0.193 £0.000 0.213+£0.008  0.094 £ 0.002
Scaffold  FraGNNet-D4 0.110 £0.000 0.127 +0.002 0.067 4 0.001

For a given spectrum, the set of OS peak masses M©® is defined using a 10 ppm mass cutoff (see Section [4.3)).
dry is the total variation distance between the true OS distribution and the predicted OS distribution, given

by Equation

oy = |P(M%) — Py(M®)| (25)

dry measures how well the model can correctly predict the total OS probability. Table [5| summarizes the
OS prediction performance of the FraGNNet models. Increasing fragmentation depth from d =3 tod =4
resulted in both a reduction of OS peaks (lower P(M©%)) and an improved ability to approximate P(M©9)
with Pp(M©%). This is useful since knowing P(M©%) at inference time can help identify situations where
the fragmentation algorithm performs poorly (in terms of PR and PWR, Section . In such cases, it is
impossible for the model to make an accurate MS/MS prediction.

A.8 Model Ablations

Table 6: FraGNNet Model Ablations. (-CE) is removal of collision energy covariates, (+Edges) is the addition
of DAG edges and associated features. Performance reported on the InChIKey test set (mean and standard
deviation of 5 random seeds). Best scores are in bold.

MODEL Crin Cxux
FRAGNNET-D3 0.721 +£0.002 0.693 £ 0.002
FRAGNNET-D3 (-CE) 0.711 = 0.001 0.683 = 0.001
FRAGNNET-D3 (4+EDGES) 0.716 & 0.001 0.687 + 0.001
FRAGNNET-D4 0.736 +0.002 0.709 + 0.002
FRAGNNET-D4 (-CE) 0.721 + 0.001 0.694 + 0.001

We performed two kinds of ablations on FraGNNet: (-CE) corresponds to the removal of merged collision
energy information (Appendix [A.5.4)), (+Edges) corresponds to the addition of bidirectional edges (and
associated edge embeddings) and message passing in the Fragment GNN. The removal of collision energy
information had a negative impact on performance, as expected. However, the addition of DAG edge
information did not have a strong effect. This seems to suggest either that the hierarchical relationships
between fragments (i.e., nodes in the DAG) might be easy for the model to infer without DAG edges, or that
this information is not helpful for making spectrum predictions.

ICEBERG (+OptFrag) is a modified version of ICEBERG that uses additional information from the ground-
truth MS/MS spectrum to optimally select a set of fragments for each prediction. We emphasize that this
ablation is intended solely for benchmarking purposes, since in most real-world applications the goal is to
make predictions for molecules without first observing their MS/MS spectra. Providing ICEBERG with
this additional information resulted in improved performance that nearly matched that of FraGNNet-D4
(Table [7)).
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Table 7: ICEBERG Model Ablations. (+OptFrag) replaces stochastic fragment generation with an optimal
approach that uses information from the ground-truth MS/MS spectrum. Performance reported on both
InChIKey and Scaffold test sets (mean and standard deviation of 5 random seeds). Best scores are in bold.

MODEL INCHIKEY SCAFFOLD
Cov 1 Coix 1
FRAGNNET-D4 | 0.736 £ 0.002 | 0.678 +0.005

ICEBERG 0.707 £ 0.001 0.636 £ 0.002
ICEBERG (+OpTFRAG) | 0.732 £ 0.000 | 0.668 4 0.002

A.9 Datasets and Splits

We trained and evaluated all models on the NIST 2020 MS/MS dataset (Stein, |2012; [Yang et al., [2014), a
large commercial library of MS data. To ensure homogeneity, the original dataset was filtered to include
only [M+H]* adducts. Following (Goldman et al., 2023a; [2024), spectra for the same compound acquired at
different collision energies were combined (a process commonly referred to as collision energy merging, see
Appendix [A.10]). The resulting dataset contained 21,113 unique molecules, each with an associated merged
MS/MS spectrum. Models were trained using 60% of the data, with 20% for validation and 20% used as a
heldout test set. Two strategies for data splitting were employed: a simple random split by molecule ID using
the InChIKey hashing algorithm (Heller et al., [2015), and a more challenging split that clustered molecules
based on their Murcko Scaffold (a coarse representation of 2D molecular structure, Bemis & Murcko||1996).
Scaffold splits are commonly used to evaluate generalization of deep learning models in cheminformatics
applications (Wu et al., |2018]).

A.10 Data Preprocessing

We exported spectra from the NIST20 MS/MS spectral library (following this github repository). We applied
a number of filters based on the spectral metadata and molecular properties.

The metadata criteria are described below:
o Orbitrap instrument with higher-energy collisional dissociation (HCD)
o [M+H]" adduct type
o Precursor m/z < 1500

e Normalized collision energy
The molecule criteria are described below:

e Element composition: H, C,O,N, P, S F, Cl, Br, 1, Se, Si
o < 60 heavy (non-H) atoms

e < 240 bonds between heavy atoms

e Neutral charge

e No radical electrons

e Single molecule
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After filtering, there were 262,319 spectra representing 21,113 molecules.

Individual MS/MS spectra for the same molecule and precursor adduct were merged across collision energies
by averaging the mass distributions. More formally, let {Y(Z)}f:1 be the set of spectra corresponding to
molecule X (each measured with a different collision energy Z;). The merged spectrum Y is defined using

Equation [26]

O )

i=1 J

A.11 Compound Retrieval Continued
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Figure 7: Compound retrieval results on the InChIKey split: @ Top-k Accuracy for all values 1 < k < 50
and (]ED Predicted Rank Distribution over ranks 1-10. Mean over 5 seeds is reported; error bars indicate
standard deviation.

The retrieval results on the InChIKey split (Figure 7)) are largely consistent with the results on the Scaffold
split (Figure ), although ICEBERG does perform better in terms of top-k accuracy for k =1 and k = 2.
All models perform slightly better on the InChIKey split than they do on the Scaffold split, as expected.

A.12 Implementation Details

The FraGNNet model and baselines were implemented in Python (Python Core Team|2021, version 3.10.13),
using Pytorch (Paszke et al|2019, version 2.1.0, CUDA 11.8) and Pytorch Lightning (Falcon & The PyTorch
Lightning team|[2019, version 2.1.2). Weights and Biases (Biewald|[2020, version 0.16.1) was used to track
experiments and run hyperparameter sweeps. The recursive fragmentation algorithm was implemented in
Cython (Behnel et al.||2011, version 3.0.6). The graph neural network modules were implemented using
Pytorch Geometric (Fey & Lenssen|2019, version 2.4.0). The data preprocessing and molecule featurization
used RDKit (Landrum|2022, version 2022.09.4).

A.13 Parameter Counts

The parameter counts for all models are summarized in Table [§

A.14 Baseline Models

All baseline models were re-implemented in our framework, to facilitate fair comparison across methods.
Some of the models were originally designed to support additional covariates such as precursor adduct and
instrument type. Since our experiments were restricted to MS/MS data of a single precursor adduct ([M+H]™)
and instrument type (Orbitrap), we excluded these features in our implementations.
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Table 8: Parameter counts, reported in millions.

MoDEL # PARAMETERS
FRAGNNET-D4 1.6
FRAGNNET-D3 1.2
ICEBERG 17.6
MASSFORMER 165.3
NEIMS 125.4
GRAFF-MS 57.8

A.14.1 ICEBERG

ICEBERG (Inferring Collision-induced-dissociation by Estimating Breakage Events and Reconstructing their
Graphs, (Goldman et al.|[2024) is a state-of-the-art C2MS model. ICEBERG is composed of two sub-modules
(neural networks) that are trained independently of each other. The first module (the fragment generator)
autoregressively predicts a simplified fragmentation DAG, and the second module (the intensity predictor)
outputs a distribution over those fragments. The fragment generator is trained to approximate a fragmentation
tree that is constructed using a variant of the MAGMa algorithm (Ridder et al., [2014)). MAGMa applies a
combinatorial atom removal strategy to generate a fragmentation DAG from an input molecular graph G:
the resulting MAGMa DAG has a similar set of fragment nodes to G za, but may contain different edges
(refer to [Ridder et al|[2014}; |Goldman et al.|[2024] for full details). The MAGMa DAG is then simplified
using a number of pruning strategies. Fragments with masses that are not represented by any peak in the
spectrum are removed, as are fragments that map to same peak as another (chemical heuristics are used
to determine which fragment should be kept in such cases). Unlike our approach, no distinction is made
between isomorphic fragments that originate from different parts of the molecule. Redundant paths between
fragments are removed to convert the DAG into a proper tree, which is required for autoregressive generation.

The aggressive DAG pruning removes information that could be important for correctly predicting the
spectrum. However, this pruning also facilitates more expressive representations of the fragments that remain:
since the total number of fragments is lower, the computational and memory cost per fragment can be much
higher. This tradeoff underlines the key conceptual difference between FraGNNet and ICEBERG. The former
uses a more complete fragmentation DAG but must employ a simpler representation for each individual
fragment. The latter can afford a more complex fragment representation but only considers a sampled subset
of the DAG.

In ICEBERG the output spectrum is binned, with each fragment contributing to the intensity of a particular
bin (refer to|Goldman et al.[2024, Section 2.5 for full details). Unlike FraGNNet, ICEBERG does not explicitly
model a latent fragment distribution Py(n) or formula distribution Py(f). There is no straightforward method
to calculate these latent distributions in a way that is consistent with the output spectrum.

ICEBERG (+OptFrag) is a variant of ICEBERG that we introduced for the purposes of benchmarking
(Section. ICEBERG (4OptFrag) replaces stochastic fragment generation (i.e., the first module) with the
exact output of the MAGMa algorithm. This modification removes sampling error in the fragment generation
process, creating an artificially easier learning problem that should result in better performance. However,
it assumes access to the ground truth MS/MS spectrum for the input molecule. ICEBERG (4OptFrag) is
helpful in benchmarking because it can be used to infer how much overall MS/MS prediction error is caused
by incorrect fragment generation, but it is not practically useful as a C2MS model.

Our ICEBERG implementation was based on the code from |Goldman et al|2024] although in our experiments
the model was trained using binned cosine similarity with 0.01 Da bins (previously, it was trained using 0.1
Da bins). We applied a square root transformation to each binned target intensity during training. We also
fixed a bug that caused spurious peaks to appear in the smallest m/z bin as a result of improper batching.
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A.14.2 GrAFF-MS

GrAFF-MS (Graph neural network for Approximation via Fixed Formulas of Mass Spectra, [Murphy et al.
2023)) is a structured C2MS model. Unlike ICEBERG and FraGNNet, GrAFF-MS does not rely on fragment
information, instead predicting a distribution over formulae Py(f) directly. It uses a static library of common
product and neutral loss formulae derived from the formula annotations of a labelled spectrum dataset. At
inference time, the model predicts a distribution over the formula library, and the formula masses are used to
map this distribution to a spectrum.

In our experiments we used the NIST20 expert-curated formula annotations to construct the formula library
(see Appendix for details). Each formula annotation f in the dataset can be interpreted as a product
formula fT = f; the associated neutral loss formula can be calculated as f~ = p — f, where p is the precursor
formula for that spectrum. For each formula annotation in the dataset, we recorded its associated peak
intensity. In the case of multiple formula annotations for the same peak, we divided the peak intensity equally
across all annotations. We then selected the top 10,000 product and neutral loss formulae in terms of total
intensity across spectra in the dataset. Given a molecule with precursor formula p, the support of the formula
distribution Py(f) is defined as the union of the set of product formulae {f;"}; and the set of complements of
the neutral loss formulae {p — f; };.

We trained the model with a peak-marginal cross-entropy loss (Murphy et al. 2023)) using a 10 ppm mass
tolerance (to be consistent with our Cyyy metric). The original GrAFF-MS implementation was designed
to work with a single collision energy; our implementation uses the average collision energy to predict the
merged spectrum. Like the original model, our implementation supports isotopic traces for each predicted
peak, modelled as an additional covariate (i.e., binary variable indicating presence/absence of isotopes). This
sort of isotope information is present in the NIST20 MS/MS dataset, although it is not used for FraGNNet
or the other baseline models.

A.14.3 NEIMS

NEIMS (Neural Electron Ionization Mass Spectrometry, [Wei et al.|2019) was the first deep learning C2MS
model, originally designed for low mass accuracy (1.0 Da bins) electron-ionization mass spectrometry (EI-MS)
prediction. NEIMS represents the input molecule using a domain-specific featurization method called a
molecular fingerprint, which capture useful properties of the molecule such as the presence or absence of various
substructures. More recent works (Zhu et al., [2020; Young et al., 2023} |(Goldman et al., [2023a) have adapted
NEIMS to ESI-MS/MS prediction at higher mass accuracy (0.1 Da bins). We based our implementation on
the version from [Young et al.||2023| which uses three different kinds of molecular fingerprint representations:
the Extended Connectivity (Morgan) fingerprint (Rogers & Hahnl [2010)), the RDKit fingerprint (Landrum)
2022)), and the Molecular Access Systems (MACCS) fingerprint (Durant et al., [2002). We adapted the model
to use the same collision energy featurization strategy as FraGNNet (Equation ‘ Finally, to avoid an excess
of parameters, we replaced the final fully-connected layer’s weight matrix with a low-rank approximation.
This layer maps from the latent dimension d; = 1024 to the output dimension d, = 150000, corresponding to
the mass range [0, 1500] with 0.01 Da bins. The low-rank approximation was implemented as product of two
learnable weight matrices: a dj, X d, matrix and a d, X d, matrix, where d, = 256.

We trained the model with binned cosine similarity, and applied a square root transformation to the binned
target intensities.

A.14.4 MassFormer

MassFormer (Young et all 2023) is a binned C2MS method that was originally designed for low mass
accuracy (1.0 Da bins) MS/MS prediction. It uses a graph transformer architecture (Ying et al.; 2021) that
is pre-trained on a large chemical dataset (Nakata & Shimazaki| 2017)) and then fine-tuned on spectrum
prediction. We preserved most aspects of the model’s original implementation but adapted the collision
energy featurization and low rank output matrix approximation (d, = 128) from the NEIMS baseline. Unlike
the original MassFormer paper, we did not employ FLAG (Kong et al.| [2022)), a strategy for adversarial data
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augmentation in graphs, since none of the other models used data augmentation. We trained the model with
binned cosine similarity, and applied a square root transformation to the binned target intensities.

A.14.5 Precursor-Only

A trivial baseline that simply puts 100% of the intensity on the precursor peak. More formally, given the
input molecule’s precursor formula p, the model predicts a spectrum with a single peak {(mass(p),1)}. This
baseline is useful because the precursor peak typically accounts for a large fraction of the overall intensity in
the spectrum.

A.15 Formula Annotation Evaluation

The NIST20 ground-truth formula annotations were determined using a combination of algorithmic and
manual approaches. Following (Murphy et al., 2023), we excluded glycan and peptide spectra from our
formula annotation analysis and focused on small molecules.

Based on our correspondence with scientists at NIST, the procedure for establishing small molecule formula
annotations can be described as follows. For each precursor compound, an exhaustive decomposition of
the precursor molecular formula was used to enumerate all possible subformulae. These subformulae were
then matched to peaks in the spectrum by comparing exact subformula masses with measured peak masses.
Finally, expert opinion was used to remove unlikely annotations.

While the details of the matching process are not published, our analysis indicates that the vast majority
(= 95%) of formula annotation masses were within 10 ppm of their associated real peak masses. A small
fraction of annotation formula masses (< 1%) are within 10 ppm of at least one other peak in the spectrum.
For consistency with the peak matching metrics used elsewhere in the paper (i.e., the Hungarian cosine
similarity metric Cqyn, Appendix 7 we excluded annotations with formula masses more than 10 ppm
away from their associated peak mass.

The annotation metrics used in Section are defined in the following equations; e = 107° is the mass
tolerance parameter.

Yomen 1[Em' € M' - (Jm — m/| < emax(m,200)) A (|A(m) A A(m')| > 0)]

AR= S en LIA(m)] > 0] @)

B ZmeM Pm)I[E3m' € M': (lm —m/| < emax(m,200)) A (JA(m) A A(m)| > 0)]
AWR = S oar PO A > 0 (28)

Y pen LEm € Mz (Jm —m/| < emax(m, 200)) A (|A(m) A A(m')| > 0)]

AP = S e LA > 0 )

_ Y omren Po(m/)I[Fm € M : (jm —m/|< emax(m, 200)) A (|A(m) A A(m’)| > 0)]
AWP = S venp: Pl [ A(m?)] > 0] (30)

2
AFl= —— = (31)
AR + AP

AWF1 = 2 (32)

AWR™! + AWP™!

Note that with FraGNNet and GrAFF-MS, the formula annotations for a given input molecule are determin-
istically computed: in the former case they derived from the fragmentation DAG F¢, while in the latter they
are given by a static formula library. In both cases, the model’s learned parameters only affect predicted peak
intensities, not formula annotations. In contrast, ICEBERG uses a learned model to predict both formula
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annotations and peak intensities. This explains why seed variance for FraGNNet and GrAFF-MS is only
reported in Table [2[ for metrics that involve predicted intensities (AWP, AWF1).

In the case of the ICEBERG model, the metrics AWP or AWF'1 are not well defined due to their dependence
on predicted peak intensities. Unlike the other models, ICEBERG peak intensities Py(m’) are only calculated
after a 0.01 Da mass binning. This makes it impossible to evaluate Py(m’1) and Py(m's) for predicted peaks
m/q and m’5 that end up in the same mass bin. For ICEBERG, the other metrics in Table 2] are calculated
using the unbinned formula masses, i.e., m, = mass(f?) for each predicted formula f*.

A.16 Ensembling

Let {6% : 6% ~ P(0) }szl denote the set of parameters for an ensemble of K models with the same architecture,
sampled IID from a distribution over parameters P(#). We perform ensembling in the latent space, using
Equations |33 and to calculate the ensemble latent distributions PSS (n|f) and P (f) (respectively):

P (n|f) = ZPQ (n|f) = P(n|f) = Egp(e) [Po(n|f)] (33)

Py(f) = Ve Z Py (f) = P(f) = Eo~po) [Po(f)] (34)
k

Note that ensembling in this way results in spectrum predictions that are the average of the individual model
predictions (Equation :

- %Z Py(m) ~ P(m) = Egp() [Po(m)] (35)
k

Let Hj* (N|f) denote the entropy of PX(n|f). Note that HJ(N|f) is a Monte Carlo approximation of
H(N|f) =Eppniy) [~ log P(nlf)].

We want to show that ensembling increases latent conditional entropy. This is formalized in Equation
Eo~p(o) [Ho(N|f)] < H(NIf) (36)
Proof. Proving Equation [36] simply requires noting that entropy is strictly concave with respect to the

probability density function. To make this clear, we introduce the notation h(P(x)) = H(X) where h is the
entropy function applied to the distribution P(z).

H(N|f) = h(P(n|f))
= h(Eg~po) [Pa(n|f))]
> Eo~p(o) [R(Py(n]f))]
= Eg~po) [Ho(N|f)]

By the same reasoning we can get bounds for the isomorphic distributions (Equation :

Eo~p(o) [Ho(N|f)] < H(N|f) (37)

Since normalized entropy is simply a scaled version of entropy, the inequalities in Equations [36| and [37] also
hold if each entropy is replaced with its normalized counterpart.
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A.17 Isomorphic Fragment Annotation
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Figure 8: @ For each ensemble configuration (Basehne Low, High, Mix), the cosine similarity Cgyn and
normalized entropy of the annotation distribution Hy(N|f) are reported. For both metrics, the average score
of the individual models (Individual) is compared with the score of the ensemble (Ensemble) Each ensemble
consists of K = 15 models. Standard deviations for the K individual models are plotted as error bars. (]ED
Pairwise fragment annotation agreement (PFA) for all ensemble combinations are plotted in a matrix. The
consensus agreement (CFA) is ~ 89%.

For a given pair of ensembles Pglf and P,fj , pairwise fragment annotation agreement (PFA) measures the

average amount of mode agreement betwen their fragment annotation distributions P,<(n|f) and P;* (n|f).
More formally, let F; be the set of formula annotations in a predicted MS/MS spectrum i. PFA is defined
using Equation [38

(38)

ZfeF [arg max;, ng(ﬁ|f) = arg max;, ng(mf)]
PEA = Z |F3

%

Consensus fragment annotation agreement (CFA, Equation is similar to PFA but measures agreement
across all ensembles.

Efer [ ab (argmaxﬁ Pe{f(mf) = arg max;, Pelj(fz,|f))]
CFA = - Z 7 (39)

Figure [§| presents the same experiments as those covered by Figure [b| but focusing on the isomorphic
annotation distribution Py(7i|f) instead of Py(n|f). The general trends are the same: ensembling increases
both cosine similarity and normalized entropy, PFA is > 91%, and CFA is ~ 89%. Note that for each ensemble
configuration, Hy(N|f) < Hg(N|f); this makes sense, as one would expect Py(1|f) to be more concentrated
than Py(n|f) since the former does not distinguish between isomeric fragments.

Note that cases where only a single fragment is possible (i.e., formulae f € F; such that P (n|f) is a
degenerate distribution) are excluded from our analysis.
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A.18 Hyperparameter Optimization

For each model, we ran a random hyperparameter sweep with a budget of 100 samples on the InChIKey split,
and selected the configuration with the best validation performance as measured by binned cosine similarity
Cpin- The specific parameters that were optimized varied depending on the type of model.
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